Biometrika (2025), 103, 1, p. 1
Printed in Great Britain

Inference for spatial random effects model under
dependence

By S. BONNERJEE
Department of Statistics, University of Chicago
sohambonnerjee@uchicago.edu

S. DEB
Decision Sciences, Indian Institute of Management Bangalore
soudeep@iimb.ac.in

AND W. B. Wu
Department of Statistics, University of Chicago
wbwu@uchicago.edu

SUMMARY

We study statistical inference for spatial random effects models under general depen-
dence structures. Unlike classical spatial econometric models that assume parametric
autoregressive dependence or Gaussian random fields, our framework accommodates broad
classes of weakly dependent spatial processes defined through functional dependence
measures. Building on Wu’s (2005) theory of physical dependence, we establish central
limit theorems for least-squares estimators in both fixed- and random-design settings,
under mild stability and leverage conditions. The asymptotic covariance structure is
characterized nonparametrically, and a consistent HAC estimator of the asymptotic vari-
ance is developed. The proposed theory relaxes Gaussianity and parametric assumptions
commonly imposed in spatial panel data analysis, thereby extending asymptotic inference
to a wide family of nonlinear and non-Gaussian spatial random fields.

Some key words: spatial field, random effects, central limit theory, HAC

1. INTRODUCTION

Spatial interactions in real-life datasets are a common cause of heterogeneity, often
arising in form of spill-over effects between cross-sectional units, or regional effects in panel
or longitudinal spatial datasets. In this context, random effects or mixed effects modeling
to account for spatial correlations is a well-studied topic of interest in econometrics and
statistics. These endeavors have found wide applications in analysis of various public
expenditure and policy affects, population and industrial growth e.g. Case (1991); LeSage
(1999); Dharshing (2017); Imran et al. (2023); various production parameters e.g. Audretsch
& Feldman (1996); Druska & Horrace (2004); Dasgupta et al. (2018); Romao & Nijkamp
(2019); epidemiology and disease incidence modeling e.g. Reece & Hulse (2020); modelling
housing prices e.g. Helpman (1998); Hanson (2005) etc. In this context of panel data,
Swamy & Arora (1972) pioneered the use of random effects model to account for across-
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2 BONNERJEE ET AL.

individuals interactions. However, they did not use it to model spatial interactions. On the
other hand, classical texts on spatial modeling assumed a particular parametric set-up in
order to use likelihood-based methods such as those in Cliff & Ord (1981), or generalized
moments estimators, as in Kelejian & Prucha (2010). Related important research by
Anselin & Bera (1998); Baltagi & Li (2006); Baltagi et al. (2007); Kapoor et al. (2007);
Corrado & Fingleton (2011) consider uncorrelated region-specific random effects, and
model the spatial interaction in lieu of a first order autoregressive model. We do not
attempt to summarize such a huge literature in the small space of this paper; instead, we
would point the readers to Anselin (2013); Baltagi (2021) for a detailed overview.

Moving beyond the spatial autoregressive structure, more general covariance structures
for Gaussian random fields were explored in the seminal work by Stein (1999), Section 2.7.
However, Gaussianity is an idealized assumption that often cannot be verified. Central
limit theory can be established in general stationary spatial random fields El1 Machkouri
et al. (2013); Deb et al. (2017), but their extension to applications geared towards spatial
random effect modeling is yet to be explored. The fundamental challenge in this direction is
that the regression estimator can no longer be expressed as a sample mean of a stationary
random field; therefore, the arguments by the previously-mentioned papers do not carry
forward automatically. Moreover, in absence of a well-defined covariance structure, it
remains to provide a valid non-parametric estimate of the variance of the regression
estimate.

In spatial analysis, most often one comes across irregularly spaced datasets. Concretely,
suppose (I )nen C Z% be the set of finite sampling locations. We assume that I, :=
{Ln1,...,Lyy,} satisfies r, := |[';,| — 00 as n — oo. For a streamlined presentation, we
can ignore these intermediary parameters by letting r, = n; moreover, we will ignore
the subscripts n in the locations Ly, j, to write Ly = L,, ;. For each location L;, i € [n],
suppose observations are available for ¢; many replicates. Mathematically speaking, we
have access to (Y;j, X;5) € R@RP, j € [4;],7 € [n]. In this article, we focus on the random
affect model

Yij=X;B+UL +eij, BERY, X;; €RP, je[b], i € [n], (1)
where, Ur,, denotes the spatial random effect corresponding to the location L;. Further, for
ease of exposition, let X = (X171 : Xq2:...: Xngn)T € R2=:%“%P be the concatenated form
of the design matrix, and Y = (Y11 : Yia:...: Yy )" € Rk be the response vector.

Note that in the model (1), only (Y;;, X;;) are observed. Assuming S = X'X to be
invertible, we analyze the least square estimate, defined as

Brs = S7IXTY. (2)

1.1.  Organization of the paper
1.2.  Notations

For i = (i1, -+ ,ip) € Z%, let |i| =iy ---i,. We denote the set {1,...,n} by [n]. The
d-dimensional Euclidean space is R?. For a vector a € R, |a| denotes its Euclidean norm.
For a matrix M € R?™ p*(A) denotes its largest singular value. For a random vector
X € R? and p > 1, we denote || X, := (E[|X[P])'/?; in particular, | X|| := || X|]2. We also
denote in-probability convergence, and stochastic boundedness by op and Op respectively.
We write a,, < by, if a, < Cb,, for some constant C' > 0, and a,, < b, if C1b, < a, < Cob,
for some constants C7,Cy > 0. Often we denote a,, < b, by a, = O(b,). Additionally, if
an /by, — 0, we write a, = o(by,).
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2.  SPATIAL DEPENDENCY STRUCTURE

In this section, we describe our approach to capturing the dependency between different
spatial locations. In contrast to a direct Bayesian approach by encoding the dependence
into a joint across-location prior information, we provide a more general framework of
dependent random fields by building on Wu (2005). Note that this approach has also
appeared previously in El Machkouri et al. (2013); Deb et al. (2017).

Let (ex)geza be i.i.d. random variables independent of ¢’s, and for k € Z%, let Fj :=
o(eg—;: j € Z%). Then we will model

Uk:g(]:k)7 kEZda (3)

for a measurable function g : ®,c7¢R — R. The characterization (3) is quite general, and
arises naturally out of writing out the joint distribution of (Uy)czq in terms of compositions
of conditional quantile functions of i.i.d. uniform random variables. Note that {Uj}1.cza
can be viewed as a spatial stationary process, in that for any sequence {t1,t2,...,tym} C Z4

and any k € Z, it follows that (Uy,, Usy, ..., Us. ) % (Usyats Uyt - - s Us. 130).

Assume that Uy, € Ly, where L, is the set of all random variables with finite ¢-th
moment. In order to quantify the dependence across spatial locations, we use the idea
of coupling (Wu (2005)) to define dependence measures. Let €}, e;,4,7 € Z? be i.i.d. The
functional dependence measure (FDM) can be defined as follows.

DEFINITION 1 (FUNCTIONAL DEPENDENCY MEASURE AND STABILITY). Let
UeLyqg=1,i¢€ Z%. Define

ig = HUZ — Ui,{O}qu where U; 1oy = g (e;‘_s; s € Zd) ,

and €5 = e;j if j # 0 and e = e. Due to stationarity, we will let §_; 4 := d;4. Also for

m =0, let
Omq = Z 0j.q

lj]=m

be the Dependency-Adjusted Norm (DAN). The random field (U;) defined in (3) is said to
be g-stable if Ay := O, < 00.

The FDM 0; , at i € 7% encapsulates, on average, the effect of Uy on Uy for any k € Z¢.
For example, in a linear random field defined by Uy, = > 74 aser—s, diq = |ail|leo — €fllq-
On the other hand, The DAN, ©,, , aggregates these effects over |i| > m, to characterize
the tail decay of the dependence as the locations are further away from each other. Finally,
the concept of stability enshrines a notion of weak-dependence, and acts as a version of
long-run variance of the spatial random field. This set-up is quite general, accommodating
widely ranging classes of dependent random fields. We illustrate with two examples of
g-stable process.

Ezample 1 (Random fields with Lipschitz Bernoulli shifts). Consider a sequence of non-
negative coefficients {b;};cza4 such that B := ). _,4b; < co. A general class of spatially
dependent random fields of the form (1) is described by a coordinate-wise Lipschitz
function

l9(@) = g(W)] < D bilwi — yil, = (w1)icza, ¥ = Wi)ieza € BienaR. (4)
i€Zd
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4 BONNERJEE ET AL.
For example, the spatial autoregressive process, defined as
U; = F(Ui—j)jen; €i), N C Z% is finite and 0 ¢ N,
satisfies (4). Observe that from (4) it also follows that
Sip < billei — €} llg = billeo — €l
i€z

and consequently, A, < B. Therefore, the processes satisfying (4) are g-stable. In particular,
such processes are known to satisfy Geometric moment contraction if b; = O(p") for some
p € (0,1); see Example 2 of Deb et al. (2017). Another interesting example of this class is
the spatial maz-stable process U; = max cya as€i—s,1 € 7%, used to model spatial extreme
events (Buishand et al., 2008; Ribatet & Sedki, 2013). Since it holds

|U; — U}| = | max{ajep, Hslglx as€i—s} — max{aieg,rglig( asei—s}| < |ailleo — €],

it follows from (4) that this process is also g-stable if {a;};cza are absolutely summable.

Ezxample 2 (Logarithmic stochastic volatility models). Recently, rough stochastic volatil-
ity models have been well explored in asset price models and as a good fit to option prices
Bayer et al. (2020, 2021); Wu et al. (2022). Translated to our notation, a simplified version
of this model can be represented as

U, = CZ eXp( Z OZSZI',S),Z. € Zda

seZd

where 2z, "<& N(0,1), and ¢; are i.i.d. independent of z; with ||(p||2 < co. Here e; = ((;, 2;).
Note that

8iz < 2llolallexp( Y aszios) —exp( D aszi )|z

sezd sezd
Slexp( D aszios)llallexp(eizo) — exp(aizg)]l2
SEZ s#i
Sexp(e>  a?)|ai exp(caf),, (5)

sF#£i

where the final inequality follows from || exp(a;zp) — exp(a;z))||3 < Var(exp(a;zo)).
Clearly, if > |as| < 0o, then we must have

Ay < Z las| exp(c Z a?) < .

s€Z4 s€Zd

3. CENTRAL LIMIT THEORY FOR REGRESSION WITH RANDOM EFFECTS

In this section, we systematically develop an asymptotic theory for estimating 8 in (1)
by B 5. Our subsequent discussions are divided into two subsections. In Section 3.1, we
describe the regularity conditions imposed upon which central limit theory. Moving on, in
Section 3.2, we present the central limit theorem for 3 itself, and discuss its connotations. In
particular, we also present an accompanying result for random design, that also highlights
the practicality of our regularity conditions for the fixed-design scenario.
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3.1.  Regularity conditions on (1) and X
Before we describe the critical assumptions underpinning our theoretical results, it
is instrumental to introduce some notations. Let the auto-covariance function of the
dependent spatial random effects Up,’s be defined as ~;_; := Cov(U;, Uj) for 4,5 € Z%. For
generic k,1 > 1, denote by 1, = (1,...,1)T € R¥. Define the matrix Xy = JT.J T, where,

1, 0 ... 0
Y0 YLo—Ly + -+ VLp—Ly
01,...0 .
r=| Lo |erT = | erXEx . (6)
Yo-ln oo o0 0 0.1,
and T = X2y X € RP*P, and
A= 871751 ¢ RP*P, (7)

The following regularity assumptions are necessitated to ensure a valid Gaussian approxi-
mation.

Assumption 1. (L): S is invertible, and it holds that Max) b ™ g, (XS™IXT)p — 0
as n — 0o.

(W): T is invertible, and there exists a constant ¢ > 0 such that p*(T71) >0 | 2| X;.12 <
c.

(D): It holds that % — 0 as n — oo.

Remark 1. Condition (L) is also known as the Huber’s condition Huber (1973). It
controls the leverage, facilitating the application of Lindeberg condition in order to
deduce the asymptotic normality of regression coefficients. In multivariate linear regression
analysis, such assumptions have been ever-present (Arnold, 1980; Bickel & Freedman,
1983; Lei & Ding, 2021; Jochmans, 2022). In contrast, Condition (W) can be thought of
as a weak-dependence condition. In particular, (W) ensures that the stationary processes
(Ui);eza can be well-approximated by m-dependent processes for a certain choice of m.
Finally, condition (D) ensures that it is the variance contributed by U;’s that dominates
in the covariance structure of B It is possible to derive central limit theorem in absence
of (D); however in these cases, the variance may become intractable and consequently,
difficult to estimate directly.

It is illuminating to further gain perspective on Conditions (W) and (D) by exploring
them for the much simpler intercept-only model

Y,i=8+U;+¢ei;,B€R, (8)

with (U;);eza are as in (3). For model (8), the least-square estimator of @ simplifies to
B= >3 Yij/ > ti. For (8), (W) and (D) condense into

Zi,k Ll VL~ Ly

2.4

Assumption 2. (W) There exists a constant ¢ > 0 such that = c

(D) It holds that %Zf; — 0 as n — o0.
Note that, under the model (8), (L) becomes trivial, since (3, ¢;)~! < |T'»|~! — 0. Note
that (W?) effectively constrains the dependence of the spatial random effect to have a faster
decay. On the other hand, the interpretation of (D’) can be understood to be ensuring
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6 BONNERJEE ET AL.

that ¢;’s are large enough. Mathematically speaking, it implies either max; ¢; >> \/n, or
in general, at least =< n® number of ¢;’s are of the order at least n(1=9/2 ¢ ¢ (0,1), d > 0.
Even though in principle, a Gaussian approximation result do not require this condition,
in order to obtain an identifiable asymptotic variance, we would be required to capture
the auto-correlations between random effects (U;);cz separately to the variability due to
the noise €; ;’s, which restricts us to the conditions such as (D’) and (D).

3.2.  Central limit theory
In light of the Conditions (L), (W), (D), we present our first main result: a central
limit theorem for the estimate 3.

THEOREM 1. Grant assumptions (L), (W), (D) for sampling locations (¢;)I"_, the
random effects Uy, k € Z¢ and the design matriz X respectively, along with Ao < 0o. Recall
A from (7). Then, assuming the model (1) , it holds that

ATV2(Bg — B) -5 N(0,1,). 9)
In particular, for model (8), (W?), (D’) along with Ay < 0o ensures that

(2?21 Ei)Q 3 d
Zi,k €i€k7|Lika| (B—pB) — N(0,1). (10)

The relationship between (W), (D) and (W?), (D’) can be further analyzed through
the lens of random design matrices.

THEOREM 2. Consider the model (1). For the design matriz X, and i € [n], suppose
Xij=(1: Zij)T with the random variables Z;; € RP™Y satisfying E[Z;;] = pi, and Z;j —

i i subG (07) for all j € [€;]. Let sup;(|us| V 03) = O(1) and

Amin(z&fkwLFLk\ﬁiﬁg) > o Z&‘&ﬂwﬁma where fi; = (1:p] )" (11)
Further grant Ay < co. Then, under the conditions (W’) and (D’), (9) holds.

4. ESTIMATION OF VARIANCE

Observe that from (9), we need to estimate
A=5"XTy x5,
where we recall that S = XTX. For k € Z¢, let
Ap ={(i,j): Li — Ly =k}, and L :={k € 74 . Ay is non-empty}.

Let K : R — R be a symmetric kernel with bounded support [—w,w], with K € C!, and
sup,, |K'(x)| < C. With a slight abuse of notation, for v € R? let K(v) := K (v1) - - - K (vq).
Since the spatial stationary field (U;);., is unobserved, we will employ an estimate based

on Ry, :==Y; — X'ZT,BA For a bandwidth B,, — oo, define
R%l Ry, Ry, ... R, RL,
I:= : U )
Ry, Rr, R, RL, ... R%n
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and let 195
Su(Bp) =J@ o K,)J 5 AB,) = S7TIXTSy(B,)XS™1, (12)

with (K,,);; = K(B,'(L; — L;)), and o denotes matrix Hadamard product. In order to
infer the consistency of A, we will impose the following two additional conditions on the

design.

max; 07| X;.|2

Assumption 3. (V1) It holds that S ExP 152|X E 0 as n — 0. 200

(V2) It holds that p*(S71),/>, 2| X;.|* — 0 as n — oo.

Condition (V1) is the standard “balance" condition, which ensures the sums of the design
matrix at each of the locations, are not widely-varying. In other words, (V1) establishes a
restriction on between-group variability. In contrast, (V2) can be viewed through the lens

of within group variability. Indeed, if one assumes a control on the within-group variability s
that for each location 4, maxi<j<y, | X;;|* < C|X;.|* for some fixed constant C' > 0, then

it is easy to deduce

_ C _
XSTIXT) e < Cp (ST X; ]’ < *(S~1 221X, |4 =0, as
K]g;azxi&( )ik J )mgXI il miwiﬂ( ) Z 7| X |* =0, as n — oo,

where the limiting assertion follows from (V2) and min; ¢; > 1. In this sense, Condition
(V2) can also be be viewed as a stronger version of (L). Note that maxj<j<s, | Xij|> < 20
C|X;.|? will usually be satisfied as long as ¢;’s are not too large. However, we do not keep
ourselves restricted to this condition, and resort to a more general assumption (V2). It is
useful to also look that the versions of (V1) and (V2) for the much simpler model (8),
whereupon the necessity of these additional restrictions will become clearer. Indeed, for
the intercept-only model, (V1) and (V2) condenses into 215

Assumption 4. (V?) It holds that DEX}; =o(1),

2 max; £

: ZZ 4 < max; 4 <
since =75 <R R Therefore, for the intercept-only model, (V’) alone

suffices in establishing the necessary control on the magnitudes of ¢;. For the general case

of a fixed design, note that in Assumption 3, the presence of | X;.| precludes the possibility

of V1 implying V2. This is to be expected, since the magnitudes of the design matrix 2o
X is also needed to be controlled to ensure a consistent estimation of variance, thereby
necessitating two separate, slightly convoluted conditions. The following result establishes

the consistency of our variance estimate under these conditions.

THEOREM 3. For the model (1), suppose the sampling locations (¢;)I, the random ef-
fects Uy, k € Z% and the design matriz X satisfy the assumptions (W), (D) of Assumption s
1, and (V1), (V2) in Assumption 3. Moreover, in (12), choose a By, — oo satisfying

i i X P
Bg\II—>O,asn—>oo, where\Il:max{nmxH *( 22€2|X ]4 Z()}

oA a1x.p

(13)
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8 BONNERJEE ET AL.
If k(S) < C for a constant C' independent of n, and Ay < oo for some q > 4, then, it
holds that
Byl
PATH A= A) = 0p(Opg g+ B, Y Oug + Bi¥) = op(1),
m=1
where we recall O, 4 from Definition 1.
Remark 2 (Choice of the bandwidth). An optimal choice of the bandwidth will crucially
depend on (i) the (unknown) dependency structure of the spatial random effects, and
(ii) the (known) design matrix X, through W. Often, especially in the context of time

series, it is assumed that ©,, , decays polynomially, i.e. ©,, , = O(m™") for some vy > 1;
see Wu (2005); Berkes et al. (2014); Karmakar & Wu (2020). This is also known as weakly

1
dependent setting. Then, the optimal choice of B,, can be obtained as B,, < ¥~ d+1  which
is independent of 7.

Corresponding to Theorem 2, we provide a result tackling the estimation of asymptotic
variance for the random-design case.

THEOREM 4. Consider the assumptions of Theorem 2, and further assume that
Amin O Liftift] ) > co > i (14)
i i

Additionally, grant (V’). Then, in (12), as long as B, — oo satisfies

i max; EZQ Z&
B = o(1), with ¥ —max{w,é;eg}, (15)

it holds that p*(A~Y(A — A)) = op(1).
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5. APPENDIX A

In this section we provide a proof of Theorem 1. The proof essentially follow the line of
argument in El Machkouri et al. (2013); however we provide the detailed proof for the
sake of completeness.

Proof of Theorem 1. Write the model (1) as

Y =XB8+U +e, (16)
where U = (ULlll—'; I ULnll—;)T, and € = (e1,1 : ...,&ny,) " . Note that from (16), it
can be written

Brs=B+5'XTU + 57'xe. (17)

Condition (L) ensures applicability of Lindeberg-Levy central limit theorem on S™'XT¢,
and dictates that

(028 1 125-1XTe 45 7. £ N(0, 1) (18)
Next, we aim to show that
ATV xTy -4 7 L N(0, 1), (19)

Fix m,, € N such that m,, — oo and m,,/|T";,| = 0, as n — oo. Subsequently we will omit
the subscript n. Consider the o field F}* := o(eg—; : |j| < m), and define the m-dependent
random variables as

U™ = RlU|F, ke 7
As a stepping stone towards proving (19), let us first show that
E[VV'] = 0as n — oo, (20)

where V = A~1/28-1XT(U — U™) € RP. By Cauchy-Schwarz inequality, it is sufficient
to show E[VTV] — 0 as n — oo, which is equivalent to

E(U - U™)TXT'X(U —=U™)] = 0 as n — . (21)

We proceed as follows.

E[(U - U™)Ts(U —U™)) = ij

where the inequality is due to Proposition 1 of El Machkouri et al. (2013). Therefore, the
left hand side of (21) can be bounded as

B[V - ) A - U] < 1@ DRI A o, (22
=1

by virtue of Condition (W) and Lemma 2 of El Machkouri et al. (2013). This shows (20),
which, along with E[V] = 0, immediately implies that

v Zo.
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Henceforth, we focus on a central limit theory A=1/25-1XTU ™) We will apply Theorem
5. For ease of notations, let

M, (i) = W;UL,

where W; = A1/26-1XTR, € R? with R; = (0:...: 12 :0...:0)"T € R i Clearly,
S My (i) = A7V28TIXTUM) | and similarly S0, W;Ur, = A~Y/257'XTU. There-
fore,

ZM ZM - (Z Wz‘ULi)(Z WiUz,)' |
<||A 1/25 1XT(U Ut )||(||A_1/25 IXTU|| +AT2sTIX U™ =0
similar to (22). In view of E[(}1, WiUL,) (31, W;UL,) "] = I, one obtains

ZM ZM "= 1, as n — . (23)
Moreover, Condition (W) dictates that
S CE[M.0))* =) E[U)*R XTTIXTR,
el i€l
< Var(Up)p"(T™) ) 61X, * < oo. (24)
i=1

For the Lindeberg Condition, fix € > 0. Define

() =m¥ Y E (HM P M ()] > em ,fd}).

ZEFn

Define v (z) := E[UZI{|Us| = x}]. Choose
o = min { | (771) a1, )3 || o) .

Clearly, (23) and (24) are valid for this choice. Proceeding as in Lemma 3 of E1 Machkouri
et al. (2013), one can derive that lim,_,o L, (¢) = 0. Therefore, an application of Theorem
5 implies a central limit theory for U7, in turn showing (19).

Finally, in view of (D) and (W), one can deduce A~'/28~1/2 — O, which enables us
to conclude the proof. [l

THEOREM 5 (GENERALIZATION OF THEOREM 2, HEINRICH (1988)). Let (T'y),,»; be
a sequence of finite subsets of 7% with |I'p| — 0o as n— oo and let (M) 1
be a sequence of positive integers. For each n > 1, let {Un(j),j € 74,U,(j) € Rp}
be an my,-dependent random field with EU,(j) =0 for all j in Z%. Assume that

E[(>jer, Un(1) (X jer, UGN ] = = as n — oo with p*(X) > ¢ > 0. Further assume
that

> ElU.)IP <6, (25)

Jj€lrn

350
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360

365

370
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and for any € > 0 it holds that

2d _
lim Ln(e) i=m2 S B (1025, ) psemse ) = O (26)

n—oo
NSNS

Then it can be deduced that 3 ;. Un(j) LN N(0,%).

Proof of Theorem 3. The main idea of the proof is to accurately estimate the matrix Y.
To that end, we begin with an oracle estimate. Consider the kernel K as in the statement
of the theorem, and define

Uz, Jo by UL UL, K(255) Jo gy - U U, K (22550 0y, 4,
Up U, K (2255 Jp, 0, U, UL, K (L” 2) ey - Uz, Jtntn
(27)

With the help of Xy, define the oracle estimate A = S™IXTE;XS~1. We first quantify
the approximation error of X.

The key ingredient in our proof is the argument via projection. Let 7 : Z — Z¢ be a
bijection, and for s € Z,let G; = o ( o) U< s) be a o-field. The corresponding projection
operator is defined by Ps(-) :=E[- | Gs] —E[- | Gs—1]. Such operators are also used in

El Machkouri et al. (2013). For convenience, let D = XS~! € R 6%P, Clearly,

A-E[A =D Pu(Sy)D=>_ K(k/Bn)>_ Pu(D'SD), (28)
UEZ keL UEZ

where, for each k € L,

2
UL1 J51,€11k=0 UL1 UL2 J£17521k=L1*L2 ce ULI ULnJ51,5n1k=L1*Ln

g = : : .. :
2
U UL, Jo e k=1, ULoUL, Joo 00 I=10—15 - - - Ui, Ju, 0,1k=0

Note that

p
o PuDTED) < D0D Pul YD wuULUL),

u€Z st u€Z (4,5) €Ak

where wgs) = RiTD.S, with D.g € R b being the s-th column of D, 1 < s < p. Subse-
quently, fix 1 < < d. For each k€ L, P, (Z(” CAL w(s)w(t)UL Ur,) are martingale

differences with respect to the upwards filtration Gs = (e : | < 5). We will follow a
slightly different treatment for the two regimes g € (2, 4], ands ¢ > 4. For the latter one,



Inference for spatial random effects model 13

since || - [|4/4 is a norm, an application of Burkholder’s inequality Burkholder (1973) yields,

2
S Y wPulP, (UnUL)
u€Z (i,j) €Ak a/2
2
= Z Z wz(S)wJ(‘t)P“ (ULiULj)
u€Z (i,j)EAL /4
2
< Z Z w w . (UL,UL,)
w€Z |(i,5)EAg a/4
2
|y wr o)
u€Z || (i,5) €Ak /2
2
< qu ( Z wz(S)wg(‘t) HPU (ULiULJ)q/Q)
u€Z \(i,7)€A
2
<GS | 3wl (81 rya + 01,0
u€Z \ (i,j)€Ak
2
<20, HU0||§Z |:<Zw wlk (55 —r(w) ) (Zw ka 5L (), q> } . (29)
UEZ

Now, in light of Cauchy-Schwarz inequality,

2 2
Z (Z wgs)wgz)égi_ﬂum) < maxw Z (Z’LU (Sg —7(u) )

UEL 7 UEL A
<maxw Z(Zw 00, —r(u) ) <Z§g7(u )
u€EZ i
maxw A2 Z w
ey,

Observing that > ... K (k/By,) = O (BZ), for ¢ > 4, from (28) we obtain

T |

=8, < uptai( Lmpsel”) (52 ”)

t=1

T |

p p
< Cpy A ( 3 max DIRZ) <Z J DTS RRT D>
s=1

t=1 =1

395

400

405
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which immediately yields, in light of (W) and some elementary matrix manipulations,

o, max; £;] X;.|
> G1X P

For g € (2, 4], the above argument fails since || - ||;/4 is no longer a norm. Therefore, we will

follow a slightly different argument which uses (|ay| + |az| + .. )% < |ay|¥* + |ag|¥* +
The following series of inequalities hold :

l*(A™H(A — E[AD)lly/2 < CpgATBRA(S) (30)

q/2

ZZM w ULUL)

UEZ (4,5) €Ay, a/2
214/4
<IX| X wwPu o)
u€Z | (i,§) €A o4
q/2
< Z Z w w UL Ur. )
u€EZ ||(i,5) €Ak 4/2
q/2 q/2
AN e (Z w’SS)wl(z)(sgi—T(u),q) (Z wl® w@k o1, —T(u),q> ,
= i

where the last inequality follows similar to (29). Now, applying Holder’s inequality, one
obtains

qa/2 a/2
> <Z wgs)wz%ew(u),q) <maxu" Y (Zw Ot ~r(u), q>

UEL i u€Z K
$)4/2 5)a/2 2—-1
< max w, (s) Z (Z w; 56 —7(u) ) (5&'—7(71)»‘1)(]/
‘ UEZ %
(s)9/2 i 5)‘1/2
< max w AQ/Q Z ( )
=1

Therefore, for a general ¢ > 2, (30) can be generalized to

smax; 4| X | - (3, (Ez‘\Xi'Dq//Q)z/q/, ¢ =qn4

(31)

l*(A™H(A =~ E[AD)lly/2 < CpgA7BRA(S)

Now, we focus on estimating the bias. Let R, = p*(E[A] — A) < p*(S~1)2p*(X T (E[Sy] —

o Ny)X). Let us define the matrix

JunTk=0  Jnpli=r,-1o - It dk=0,-1,
By = : : . : ez,

T k=Ln—11 JioguXk=Lr—Ls -+ Ju 0 Ik=0
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This matrix is useful, since ]E[ik] =Y FEr. On the other hand, E[iU] Yy =
Y rezd(K(k/By) — 1)E[¥;]. Moreover, a routine application of Cauchy-Schwarz inequal-
ity dictates that maxy p*(XT ExX) < 3, ¢2| X;.|2. Therefore, another application of (W)
yields,

PH(ATHELA] = 4)) < Cpgri(S)?] D (K (k/Bn) = 1)yl. (32)
kezd

Clearly,

DowER/B) -1 <[ D> w|+ Y Il K (k/Ba) -1

kezd k%[_BnaBn]d kE[—Bn,Bn]d
1
< Z Z 05,g0s+k,g +C Z ﬁ“ﬂ Z 0s,q0s+k,q
k@[~ Bp,Bp]" s€L ke[-Bn,B,)? " s€zd
(&
S A¢Opgqt+ CF Z Omp
n m=1

where the last inequality from g¢-stability and the definition of ©,,,, and the second
term comes from sup, |K’(z)| < C. Combining this with (31) and (32), and noting that
A, < oo due to g-stability, we finally arrive at

430

435

Bd < > / /
w(A=1( A 1 & max; £;| X;. 0] X;.)9/%)2/a
P (A7 (A - A)) gcpyq,ﬁ(s)g(@Bg,quBz@w + B | X - O (4| X [)7/2)

" m=1

> 21X P
(33)
Now we will show that A is well-approximated by A. Observe that Ry, = Vi, + Sy, where
Vi, :=Ur, — X,]S7IXTU, and Sy, :=&;. — X,]S™1XTe. For 1< 4,5 <|Ty|, define the
matrices

L;—L;

(1) — ‘/glVL]K( Bn J )Jﬁi,ﬂy
L, —L;

Bi(f) = Vi, S, K ( B, L) Je e,
L;—L;

3) _ S&-SLJ-K( = J)Jéi,fj

We will use this matrices to define a set of intermediate block-partitioned matrices to go
from A to A. Let

® k) ()
Bay  Buy -+ By
2= Lo €RLI2ut | =1,23,
®  a® ()
B(ir.ny B(ra2) - - B(raira)

be the corresponding intermediate 3 matrices. Obviously, f]U — SU = (2(1) — f]U) + 2@ 4
»@" 436, Therefore, we start off by showing that p*(A~'S~IXT2@XS~1) is small.
To break X further, note that

>, ¢ =qN4

440

445
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where
Vi,Se, = Ur,ér-—&. X, D'U —U,, X! D'e +U'DX; X}, D¢
— 7w+ v + 2,

and the R™*" matrices T, W@, H® and Z® are formed with entries TZ(] ), Wz(f), Hz(j)
and Z(2) respectively; Y2 = J( T® o K)JT € R 6% ‘i and rest of the matrices are
smularly defined. Here KC;; = K ( ' ) defines the matrix K, and o denotes the Hadamard
product. Note that, invoking (W)

p*(A 71S71XTET(2)X571)”q/2

<, pqz K‘ ZZK k/B Z filjULiéin.@Xj"th/g

(1,5) €A

maXZE | X |
G Xl

where the final inequality employs a derivation similar to (31). For the analysis of 2(2),

i)

<CpgAgBlK(S) =gra s (34)

and E(ZQ), we will employ Holder’s inequality HXTYHQ/Q Sdq | X]gl|Y ||g- Clearly,
Ip* (AT ST X TS0 XS 42

TT
<0qu€|X B KB S (K DTO) K 1 e

(4,5) €A
NN AL
d T RS
<CpgBrr(9)||D UHqW

iBIXil
> 21X

X,
<CbaABLK(S) " ( /Zz X |4m;{€||xy‘2 (35)

where in the last line we have used DTU = §~1 > tiUr, X;., along with Proposition 1 of
El Machkouri et al. (2013). Moreover, an exact same treatment yields

S~ - max; ;| X;
Ip* (AT S TIX TS @ XS [lgj2 < CpgAgBan(S)p*(S7H), > 21X 4\/ﬁ’|2
i X

(36)
lp" (AT STIX TS 09 XS ™) 472 < Cp g A Byyi( ZMX [* (37)

<CpgAgBLr(S)p*(S7h)

Moving on, we will show that p*(A~1S~ X TR()XS~1) is small. Write
S&-SLJ- = &€ — éﬁXIDTzE — éj.XZTDTE + XZT(DTeeTD)Xj.
_ 7@ 3) (3) (3)
=T, =Wy = Wi+ 227

)
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We form the matrices X)), X3 and X, ) similar to Xp2), Xyyr2) and X ,3) respectively.
We immediately have, following (35),

e 01X [? 5(5)
(ATISTIX TS (5 X A,Blg 2 < Cp A Blk
Hp( S T@3) S” )Hq/2 Cpq ( )Z |X |2 Cpq ( )Z |X |2
(38)
i g-la—1vT -1 d T \/Z §1Xi [0
[P (AT ST X Yy XS ) lg2 < CpgAgBrr(S)||D 5H(1W
éCpﬂAqu/i(S) Zg | X |4%’)(|
\/ V2o X2
(39)
1P (AT ST X TS 0 XS ™) 42 < CpgAgBin( ZKQIX . (40)

Here, (38) employs Cauchy-Schwarz inequality. Finally, we will prove an upper bound on
p*(AIDT (2 — 31,)D), where we recall X from (27). Writing 40
Vo Vi, =ULUp, - U, X/ D'U-U,, X/ D'U+ X (D'UUD")X;

._ W _ ™ L 40
=U,UL, - W Wi+ 2,

where we define W, Z(1), Yy and ¥, as before. From the definition of Yy, it is
enough to upper bound the quantities p*(A~1D S,y D) and p*(A~1D Y,y D). In fact,

in light of the definitions of the matrices WG and Z®) | we recover the bounds exactly s
same as (39) and (40):

*(A™S™ - max; ;| X;
I (4757 XTSRS s < CadBUR(S)H (57, [SD 615 \4z||X:

(41)
lp" (A1 STIX TS, XS ™) 472 < CpgAg Bk( Zﬁle [ (42)

In light of k(S) A A, = O(1), and (13), the proof concludes itself by applying (D) on
(38), (V2) on (37), (42) and (40), and (V1) on (33), (34)-(36), (39) and (41). O e

Proof of Theorem 2. The proof proceeds by establishing corresponding stochastic
versions of Assumptions (L), (W) and (D), before invoking the Theorem 1 to infer the
weak convergence. This argument is organized over the following three steps.

5.1.  Stochastic analogue of (L) 05
Write X = (12_& : Z), where Z = (z; : "'ZZ.&)T € R %=1 i5 o matrix with i.d.
N(p,0?%) entries, and zg = (Zo: - : Zkyp)T. Let hgp = (XS7!XT)ge. From equation

(2.1.8) of Cook & Weisberg (1982) it follows that

zT Z 4
hik = Z 2 —I-Zk( Zk,k‘E Zf (3)
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where

2k = Zf — (Z&-)_l sz eRP L ke [Zéi], and Z = (z1:--: Zzilfi)—r e R LX),
7 k %

It is trivial to see that (3, ¢;) 1212 5 021,_1. Therefore,

log >, 4

ZE )7

mgXZk(ZTZ)_IZk <IZT2) op mgX\ZkIQ = Op(=—

which shows

max (XS’_IXT)kk) 5 0asn— oo (44)
1<k<)" 4

5.2.  Stochastic analogue of (W)
Let M = sz gifk’Y\LFLkWillg- Let p; = (pi2, - - -, ftip) " - Observe that

n n
T = Z £i£k7|L,-—Lk\Xi-XII = M + Op( E \/Zifk’ﬂLi—Lk\)a (45)
ik=1 ik=1
where the Op acts entry-wise. Let G = ), ; lilkY|1,—1,- In view of (W?) it holds that

> ikt VOl L~ 1, <o > E?/z
n =~ 0
> ikt Ll L Ly pIN%

= o(1).
Therefore,
G_lp‘min(T) - mm( )‘ ( )7
which, in light of (11), ensures that G~ Apin(T) > co(1 + op(1)). Consequently,
PH(GT™) = Gmin(T)) ™ < g (1 +0p(1)): (46)

On the other hand,

n p p
S A% =3 B S I St Sy +OP(Z£§’/QZM) + 0300,
=1 ) k=2 % k=2 ;

k=2 1 %
(47)
Z Z l5/2
Recall (D”). In fact, = 12 = o(1) also implies that 5 12 = o(1) via Cauchy-Schwarz
inequality. Therefore, there exists a constant M such that

i GIXi?
> 6

which, in view of (W?) and (46), implies that

< M(1+ op(1)),

YUK < S+ op() (48)
=1
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5.3.  Stochastic analogue of (D)
Finally we shift attention to (D). Clearly,

n ‘ez p n 67,
(9 S X = Ze +Y D> Z7 = Os Ze (49)
i=1 j=1 k=2 i=1 j=1
On the other hand, from (47),
2 bl Xl X[ > 1+ op(1), (50)

e

and therefore, (Y7, /X, |%)71 < (¥, 2)71(1 + 0p(1)). Invoking (D?), (47) and (49)
jointly provide that

P (S)
> 2] X2

5.4.  Combining the pieces together

= op(1). (51)

In the following, we re-label all the relevant quantities with a subscript to emphasize its
explicit dependence on the number of locations based on which the corresponding quantity
is being computed. For example, if the design matrix X is computed based on some m loca-
tions and accompanying sequence of replications {l;(m)}!", the corresponding maximum
leverage MAX) <k <5 4,(m) (XS™'X 1), may be denoted as (maxlgkgzi 0 (XS_1XT)kk)m

Moreover, BLS(m) denote the corresponding least square estimate.

Now we hark back to the proof of Theorem 2. Observe that, to obtain (9), it is enough
to show, given any increasing sequence of positive integers {¢x }ren, there exists a further
subsequence {t,, }, nr € N, such that

A2 (Brs(ta,) — B) 5 N(0, 1), (52)

We proceed as follows. From (44) and (51), there exists a sub-subsequence {t )} C {tn}
k
such that

AT a.s. p*(S) a.s.
(m]?x(XS X )ke), o 0, and (ZZ X, = 0. (53)

"k

Ic

Moreover, (48), there exists a subsequence {tnf)} - {tnf;)} such that

n
(p*(T_l) ZE?]XzP) < 2M (cco) ™t almost surely. (54)
- t
n(®
We choose ny, = n,(f). In view of (53)-(54), an immediate application of Theorem 1 yields
(52), completing our proof. O

Proof of Theorem 4. We proceed similar to Theorem 2, establishing stochastic counter-
parts of (V1) and (V2) before invoking Theorem 3.

520

525

530

535

540

545



550

555

560

565

20 BONNERJEE ET AL.

5.5.  Stochastic analogue of (V1)
Observe that similar to (47), it holds that

P
max /7| X;.|? < max (% + Z max (67 p2, + E?/zOp(,uik)) = Op(max £?), (55)
(2 (2 =2 1 (2
where the Op assertion follows from sup; |p;| = O(1). Therefore, from (50), we have
max; 62 X;.|? max; (2
i BPG ) a

> G X ] il

5.6. Stochastic analogue of (V2)
Again, similar to (47) it follows that Y, ¢?|X;.|* = Op(>_; ¢?). On the other hand,

observe that sup; 0; = O(1) instructs

S ="t +0s( |3 4),

7

) = op(1). (56)

which immediately implies that
|)‘mln - mm Z gzﬂzllf@ Z E

Invoking (14), we have

Amin > 50 1 +OIP’ Zeza

and consequently, p*(S71) = Op((3_; 4:)™1). It follows

2 max; 2
LB = 05l ) = On(Perst) = oel1), (57)

5.7.  Combining the pieces together

Noting that a sequence of random variable W, 5 0/iff for every sub-sequence ny, there

exists a further sub-sequence ny, such that Wnkl LN 0, we proceed similar to Section 5.4.

Given any subsequence ny, from (56), (57), and (51), there exists a subsequence ny, such
that

maxi€2|Xi.\2> a.s -1 e a.s p*(S) a.s
AR T [l 220, (pr(S™hH 21X 14 =0, and | =—5=—> -
< Zzgz‘XZP ng ( ; )nkl Zz 1 2|X ’2

l

e

Moreover, recall ¥ from Theorem 3. Clearly from (56) and (57) and by (15), along the
sequence ny,, Bnkl\Il 2% 0. Therefore, invoking Theorem 3, we obtain

(o (A7 (A= A)),, =oe(D),

which completes the proof via the double-subsequence argument as stated in the beginning
of Section 5.4. U
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