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Summary
We study statistical inference for spatial random effects models under general depen-

dence structures. Unlike classical spatial econometric models that assume parametric
autoregressive dependence or Gaussian random fields, our framework accommodates broad 15

classes of weakly dependent spatial processes defined through functional dependence
measures. Building on Wu’s (2005) theory of physical dependence, we establish central
limit theorems for least-squares estimators in both fixed- and random-design settings,
under mild stability and leverage conditions. The asymptotic covariance structure is
characterized nonparametrically, and a consistent HAC estimator of the asymptotic vari- 20

ance is developed. The proposed theory relaxes Gaussianity and parametric assumptions
commonly imposed in spatial panel data analysis, thereby extending asymptotic inference
to a wide family of nonlinear and non-Gaussian spatial random fields.

Some key words: spatial field, random effects, central limit theory, HAC

1. Introduction 25

Spatial interactions in real-life datasets are a common cause of heterogeneity, often
arising in form of spill-over effects between cross-sectional units, or regional effects in panel
or longitudinal spatial datasets. In this context, random effects or mixed effects modeling
to account for spatial correlations is a well-studied topic of interest in econometrics and
statistics. These endeavors have found wide applications in analysis of various public 30

expenditure and policy affects, population and industrial growth e.g. Case (1991); LeSage
(1999); Dharshing (2017); Imran et al. (2023); various production parameters e.g. Audretsch
& Feldman (1996); Druska & Horrace (2004); Dasgupta et al. (2018); Romão & Nijkamp
(2019); epidemiology and disease incidence modeling e.g. Reece & Hulse (2020); modelling
housing prices e.g. Helpman (1998); Hanson (2005) etc. In this context of panel data, 35

Swamy & Arora (1972) pioneered the use of random effects model to account for across-
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2 Bonnerjee et al.

individuals interactions. However, they did not use it to model spatial interactions. On the
other hand, classical texts on spatial modeling assumed a particular parametric set-up in
order to use likelihood-based methods such as those in Cliff & Ord (1981), or generalized
moments estimators, as in Kelejian & Prucha (2010). Related important research by40

Anselin & Bera (1998); Baltagi & Li (2006); Baltagi et al. (2007); Kapoor et al. (2007);
Corrado & Fingleton (2011) consider uncorrelated region-specific random effects, and
model the spatial interaction in lieu of a first order autoregressive model. We do not
attempt to summarize such a huge literature in the small space of this paper; instead, we
would point the readers to Anselin (2013); Baltagi (2021) for a detailed overview.45

Moving beyond the spatial autoregressive structure, more general covariance structures
for Gaussian random fields were explored in the seminal work by Stein (1999), Section 2.7.
However, Gaussianity is an idealized assumption that often cannot be verified. Central
limit theory can be established in general stationary spatial random fields El Machkouri
et al. (2013); Deb et al. (2017), but their extension to applications geared towards spatial50

random effect modeling is yet to be explored. The fundamental challenge in this direction is
that the regression estimator can no longer be expressed as a sample mean of a stationary
random field; therefore, the arguments by the previously-mentioned papers do not carry
forward automatically. Moreover, in absence of a well-defined covariance structure, it
remains to provide a valid non-parametric estimate of the variance of the regression55

estimate.
In spatial analysis, most often one comes across irregularly spaced datasets. Concretely,

suppose (Γn)n∈N ⊂ Zd be the set of finite sampling locations. We assume that Γn :=
{Ln,1, . . . , Ln,rn} satisfies rn := |Γn| → ∞ as n→ ∞. For a streamlined presentation, we
can ignore these intermediary parameters by letting rn = n; moreover, we will ignore60

the subscripts n in the locations Ln,k to write Lk = Ln,k. For each location Li, i ∈ [n],
suppose observations are available for ℓi many replicates. Mathematically speaking, we
have access to (Yij ,Xij) ∈ R⊗ Rp, j ∈ [ℓi], i ∈ [n]. In this article, we focus on the random
affect model

Yij = X⊤
ijβ + ULi + εij , β ∈ Rp, Xij ∈ Rp, j ∈ [ℓi], i ∈ [n], (1)

where, ULi denotes the spatial random effect corresponding to the location Li. Further, for65

ease of exposition, let X = (X11 : X12 : . . . : Xnℓn)
⊤ ∈ R

∑
i
ℓi×p be the concatenated form

of the design matrix, and Y = (Y11 : Y12 : . . . : Ynℓn)
⊤ ∈ R

∑
i
li be the response vector.

Note that in the model (1), only (Yij ,Xij) are observed. Assuming S = X⊤X to be
invertible, we analyze the least square estimate, defined as

β̂LS = S−1X⊤Y . (2)70

1.1. Organization of the paper
1.2. Notations

For i = (i1, · · · , ip) ∈ Zd, let |i| = i1 · · · ip. We denote the set {1, . . . , n} by [n]. The
d-dimensional Euclidean space is Rd. For a vector a ∈ Rd, |a| denotes its Euclidean norm.
For a matrix M ∈ Rd×m, ρ⋆(A) denotes its largest singular value. For a random vector75

X ∈ Rd and p ≥ 1, we denote ∥X∥p := (E[|X|p])1/p; in particular, ∥X∥ := ∥X∥2. We also
denote in-probability convergence, and stochastic boundedness by oP and OP respectively.
We write an ≲ bn if an ≤ Cbn for some constant C > 0, and an ≍ bn if C1bn ≤ an ≤ C2bn
for some constants C1, C2 > 0. Often we denote an ≲ bn by an = O(bn). Additionally, if
an/bn → 0, we write an = o(bn).80
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2. Spatial dependency structure
In this section, we describe our approach to capturing the dependency between different

spatial locations. In contrast to a direct Bayesian approach by encoding the dependence
into a joint across-location prior information, we provide a more general framework of
dependent random fields by building on Wu (2005). Note that this approach has also 85

appeared previously in El Machkouri et al. (2013); Deb et al. (2017).
Let (ek)k∈Zd be i.i.d. random variables independent of ε’s, and for k ∈ Zd, let Fk :=

σ(ek−j : j ∈ Zd). Then we will model

Uk = g(Fk), k ∈ Zd, (3)

for a measurable function g : ⊗s∈ZdR → R. The characterization (3) is quite general, and
arises naturally out of writing out the joint distribution of (Uk)k∈Zd in terms of compositions 90

of conditional quantile functions of i.i.d. uniform random variables. Note that {Uk}k∈Zd

can be viewed as a spatial stationary process, in that for any sequence {t1, t2, . . . , tm} ⊂ Zd

and any k ∈ Z, it follows that (Ut1 , Ut2 , . . . , Utm)
d
= (Ut1+k, Ut2+k, . . . , Utm+k).

Assume that Uk ∈ Lq, where Lq is the set of all random variables with finite q-th
moment. In order to quantify the dependence across spatial locations, we use the idea 95

of coupling (Wu (2005)) to define dependence measures. Let e′i, ej , i, j ∈ Zd be i.i.d. The
functional dependence measure (FDM) can be defined as follows.

Definition 1 (Functional Dependency Measure and Stability). Let
Ui ∈ Lq, q ⩾ 1, i ∈ Zd. Define

δi,q =
∥∥Ui − Ui,{0}

∥∥
q
, where Ui,{0} = g

(
e∗i−s; s ∈ Zd

)
,

and e∗j = ej if j ̸= 0 and e∗0 = e′0. Due to stationarity, we will let δ−i,q := δi,q. Also for
m ⩾ 0, let

Θm,q =
∑
|j|⩾m

δj,q

be the Dependency-Adjusted Norm (DAN). The random field (Ui) defined in (3) is said to 100

be q-stable if ∆q := Θ0,q <∞.

The FDM δi,p at i ∈ Zd encapsulates, on average, the effect of Uk on Uk+i for any k ∈ Zd.
For example, in a linear random field defined by Uk =

∑
s∈Zd asek−s, δi,q = |ai|∥e0 − e⋆0∥q.

On the other hand, The DAN, Θm,q aggregates these effects over |i| ≥ m, to characterize
the tail decay of the dependence as the locations are further away from each other. Finally, 105

the concept of stability enshrines a notion of weak-dependence, and acts as a version of
long-run variance of the spatial random field. This set-up is quite general, accommodating
widely ranging classes of dependent random fields. We illustrate with two examples of
q-stable process.

Example 1 (Random fields with Lipschitz Bernoulli shifts). Consider a sequence of non- 110

negative coefficients {bi}i∈Zd such that B :=
∑

i∈Zd bi <∞. A general class of spatially
dependent random fields of the form (1) is described by a coordinate-wise Lipschitz
function

|g(x)− g(y)| ≤
∑
i∈Zd

bi|xi − yi|, x = (xi)i∈Zd ,y = (yi)i∈Zd ∈ ⊗i∈ZdR. (4)
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For example, the spatial autoregressive process, defined as115

Ui = F ((Ui−j)j∈N ; ei), N ⊂ Zd is finite and 0 /∈ N ,

satisfies (4). Observe that from (4) it also follows that

δi,p ≤
∑
i∈Zd

bi∥ei − e⋆i ∥q = bi∥e0 − e′0∥q,

and consequently, ∆q ≤ B. Therefore, the processes satisfying (4) are q-stable. In particular,
such processes are known to satisfy Geometric moment contraction if bi = O(ρi) for some
ρ ∈ (0, 1); see Example 2 of Deb et al. (2017). Another interesting example of this class is
the spatial max-stable process Ui = maxs∈Zd asei−s, i ∈ Zd, used to model spatial extreme120

events (Buishand et al., 2008; Ribatet & Sedki, 2013). Since it holds

|Ui − U⋆
i | = |max{aie0,max

s ̸=i
asei−s} −max{aie⋆0,max

s ̸=i
asei−s}| ≤ |ai||e0 − e⋆0|,

it follows from (4) that this process is also q-stable if {ai}i∈Zd are absolutely summable.

Example 2 (Logarithmic stochastic volatility models). Recently, rough stochastic volatil-
ity models have been well explored in asset price models and as a good fit to option prices
Bayer et al. (2020, 2021); Wu et al. (2022). Translated to our notation, a simplified version125

of this model can be represented as

Ui = ζi exp(
∑
s∈Zd

αszi−s), i ∈ Zd,

where zk
i.i.d.∼ N(0, 1), and ζi are i.i.d. independent of zi with ∥ζ0∥2 <∞. Here ei = (ζi, zi).

Note that

δi,2 ≤ 2∥ζ0∥2∥ exp(
∑
s∈Zd

αszi−s)− exp(
∑
s∈Zd

αsz
⋆
i−s)∥2

≲ ∥ exp(
∑

s∈Zd,s ̸=i

αszi−s)∥2∥ exp(αiz0)− exp(αiz
′
0)∥2130

≲ exp(c
∑
s ̸=i

α2
s)|αi| exp(cα2

i ), , (5)

where the final inequality follows from ∥ exp(αiz0)− exp(αiz
′
0)∥22 ≤ Var(exp(αiz0)).

Clearly, if
∑

s |αs| <∞, then we must have

∆2 ≲
∑
s∈Zd

|αs| exp(c
∑
s∈Zd

α2
s) <∞.

3. Central Limit Theory for Regression with Random effects
In this section, we systematically develop an asymptotic theory for estimating β in (1)135

by β̂LS . Our subsequent discussions are divided into two subsections. In Section 3.1, we
describe the regularity conditions imposed upon which central limit theory. Moving on, in
Section 3.2, we present the central limit theorem for β itself, and discuss its connotations. In
particular, we also present an accompanying result for random design, that also highlights
the practicality of our regularity conditions for the fixed-design scenario.140
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3.1. Regularity conditions on (1) and X
Before we describe the critical assumptions underpinning our theoretical results, it

is instrumental to introduce some notations. Let the auto-covariance function of the
dependent spatial random effects ULi ’s be defined as γi−j := Cov(Ui, Uj) for i, j ∈ Zd. For
generic k, l ⩾ 1, denote by 1k = (1, . . . , 1)⊤ ∈ Rk. Define the matrix ΣU = JΓJ⊤, where, 145

Γ =

 γ0 γL2−L1 . . . γLn−L1

...
... . . .

...
γL1−Ln . . . . . . γ0

 ∈ Rn×n, J =


1l1 0 . . . 0
0 1l2 . . . 0
...

... . . .
...

0 . . . . . . 1ln

 ∈ R
∑

i
ℓi×n. (6)

and T = X⊤ΣUX ∈ Rp×p, and

A = S−1TS−1 ∈ Rp×p. (7)

The following regularity assumptions are necessitated to ensure a valid Gaussian approxi-
mation.

Assumption 1. (L): S is invertible, and it holds that max1⩽k⩽
∑

i
ℓi
(XS−1X⊤)kk → 0

as n→ ∞. 150

(W): T is invertible, and there exists a constant c > 0 such that ρ⋆(T−1)
∑n

i=1 ℓ
2
i |X̄i·|2 ⩽

c.
(D): It holds that ρ⋆(S)∑n

i=1
ℓ2i |X̄i·|2

→ 0 as n→ ∞.

Remark 1. Condition (L) is also known as the Huber’s condition Huber (1973). It
controls the leverage, facilitating the application of Lindeberg condition in order to 155

deduce the asymptotic normality of regression coefficients. In multivariate linear regression
analysis, such assumptions have been ever-present (Arnold, 1980; Bickel & Freedman,
1983; Lei & Ding, 2021; Jochmans, 2022). In contrast, Condition (W) can be thought of
as a weak-dependence condition. In particular, (W) ensures that the stationary processes
(Ui)i∈Zd can be well-approximated by m-dependent processes for a certain choice of m. 160

Finally, condition (D) ensures that it is the variance contributed by Ui’s that dominates
in the covariance structure of β̂. It is possible to derive central limit theorem in absence
of (D); however in these cases, the variance may become intractable and consequently,
difficult to estimate directly.

It is illuminating to further gain perspective on Conditions (W) and (D) by exploring 165

them for the much simpler intercept-only model

Yi,j = β + Ui + εi,j ,β ∈ R, (8)

with (Ui)i∈Zd are as in (3). For model (8), the least-square estimator of β simplifies to
β̂ =

∑
i,j Yi,j/

∑
i ℓi. For (8), (W) and (D) condense into

Assumption 2. (W’) There exists a constant c > 0 such that
∑

i,k
ℓiℓkγ|Li−Lk|∑

i
ℓ2i

⩾ c.

(D’) It holds that
∑

i
ℓi∑

i
ℓ2i

→ 0 as n→ ∞. 170

Note that, under the model (8), (L) becomes trivial, since (
∑

i ℓi)
−1 ⩽ |Γn|−1 → 0. Note

that (W’) effectively constrains the dependence of the spatial random effect to have a faster
decay. On the other hand, the interpretation of (D’) can be understood to be ensuring
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that ℓi’s are large enough. Mathematically speaking, it implies either maxi ℓi >>
√
n, or

in general, at least ≍ nc number of ℓi’s are of the order at least n(1−c)/2, c ∈ (0, 1), d > 0.175

Even though in principle, a Gaussian approximation result do not require this condition,
in order to obtain an identifiable asymptotic variance, we would be required to capture
the auto-correlations between random effects (Ui)i∈Z separately to the variability due to
the noise εi,j ’s, which restricts us to the conditions such as (D’) and (D).

3.2. Central limit theory180

In light of the Conditions (L), (W), (D), we present our first main result: a central
limit theorem for the estimate β̂.

Theorem 1. Grant assumptions (L), (W), (D) for sampling locations (ℓi)
n
i=1, the

random effects Uk, k ∈ Zd and the design matrix X respectively, along with ∆2 <∞. Recall
A from (7). Then, assuming the model (1) , it holds that185

A−1/2(β̂LS − β)
d−→ N(0, Ip). (9)

In particular, for model (8), (W’), (D’) along with ∆2 <∞ ensures that√
(
∑n

i=1 ℓi)
2∑

i,k ℓiℓkγ|Li−Lk|
(β̂ − β)

d−→ N(0, 1). (10)

The relationship between (W), (D) and (W’), (D’) can be further analyzed through
the lens of random design matrices.

Theorem 2. Consider the model (1). For the design matrix X, and i ∈ [n], suppose
Xij = (1 : Zij)

⊤ with the random variables Zij ∈ Rp−1 satisfying E[Zij ] = µi, and Zij −190

µi
i.i.d.∼ subG(σ2i ) for all j ∈ [ℓi]. Let supi(|µi| ∨ σi) = O(1) and

λmin

(∑
i,k

ℓiℓkγ|Li−Lk|µ̃iµ̃
⊤
k

)
≥ c0

∑
i,k

ℓiℓkγ|Li−Lk|, where µ̃i = (1 : µ⊤
i )

⊤. (11)

Further grant ∆2 <∞. Then, under the conditions (W’) and (D’), (9) holds.

4. Estimation of Variance
Observe that from (9), we need to estimate

A = S−1X⊤ΣUXS−1,

where we recall that S = X⊤X. For k ∈ Zd, let

Ak := {(i, j) : Li − Lj = k}, and L := {k ∈ Zd : Ak is non-empty}.

Let K : R → R be a symmetric kernel with bounded support [−ω, ω], with K ∈ C1, and
supx |K ′(x)| ⩽ C. With a slight abuse of notation, for v ∈ Rd, letK(v) := K (v1) · · ·K (vd).
Since the spatial stationary field (Ui)i∈Z is unobserved, we will employ an estimate based
on Rℓi := Ȳi − X̄⊤

i· β̂. For a bandwidth Bn → ∞, define

Γ̂ :=

 R2
L1

RL1RL2 . . . RL1RLn

...
... . . .

...
RLnRL1 RLnRL2 . . . R2

Ln

 ,
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and let 195

Σ̂U (Bn) = J(Γ̂ ◦ Kn)J
⊤; Â(Bn) = S−1X⊤Σ̂U (Bn)XS−1, (12)

with (Kn)i,j = K(B−1
n (Li − Lj)), and ◦ denotes matrix Hadamard product. In order to

infer the consistency of Â, we will impose the following two additional conditions on the
design.

Assumption 3. (V1) It holds that maxi ℓ
2
i |X̄i·|2∑

i
ℓ2i |X̄i·|2

→ 0 as n→ ∞. 200

(V2) It holds that ρ⋆(S−1)
√∑

i ℓ
2
i |X̄i·|4 → 0 as n→ ∞.

Condition (V1) is the standard “balance" condition, which ensures the sums of the design
matrix at each of the locations, are not widely-varying. In other words, (V1) establishes a
restriction on between-group variability. In contrast, (V2) can be viewed through the lens
of within group variability. Indeed, if one assumes a control on the within-group variability 205

that for each location i, max1⩽j⩽ℓi |Xij |2 ⩽ C|X̄i·|2 for some fixed constant C > 0, then
it is easy to deduce

max
1⩽k⩽

∑
i
ℓi

(XS−1X⊤)kk ⩽ Cρ⋆(S−1)max
i

|X̄i·|2 ⩽
C

mini ℓi
ρ⋆(S−1)

√∑
i

ℓ2i |X̄i·|4 → 0, as n→ ∞,

where the limiting assertion follows from (V2) and mini ℓi ⩾ 1. In this sense, Condition
(V2) can also be be viewed as a stronger version of (L). Note that max1⩽j⩽ℓi |Xij |2 ⩽ 210

C|X̄i·|2 will usually be satisfied as long as ℓi’s are not too large. However, we do not keep
ourselves restricted to this condition, and resort to a more general assumption (V2). It is
useful to also look that the versions of (V1) and (V2) for the much simpler model (8),
whereupon the necessity of these additional restrictions will become clearer. Indeed, for
the intercept-only model, (V1) and (V2) condenses into 215

Assumption 4. (V’) It holds that maxi ℓ
2
i∑

i
ℓ2i

= o(1),

since
∑

i
ℓ2i

(
∑

i
ℓi)2

⩽ maxi ℓi∑
i
ℓi

⩽
maxi ℓ

2
i∑

i
ℓ2i

. Therefore, for the intercept-only model, (V’) alone
suffices in establishing the necessary control on the magnitudes of ℓi. For the general case
of a fixed design, note that in Assumption 3, the presence of |X̄i·| precludes the possibility
of V1 implying V2. This is to be expected, since the magnitudes of the design matrix 220

X is also needed to be controlled to ensure a consistent estimation of variance, thereby
necessitating two separate, slightly convoluted conditions. The following result establishes
the consistency of our variance estimate under these conditions.

Theorem 3. For the model (1), suppose the sampling locations (ℓi)
n
i=1, the random ef-

fects Uk, k ∈ Zd and the design matrix X satisfy the assumptions (W), (D) of Assumption 225

1, and (V1), (V2) in Assumption 3. Moreover, in (12), choose a Bn → ∞ satisfying

Bd
nΨ → 0, as n→ ∞, where Ψ = max

{
maxi ℓi|X̄i·|√∑

i ℓ
2
i |X̄i·|2

, ρ⋆(S−1)2
∑
i

ℓ2i |X̄i·|4,
ρ⋆(S)∑n

i=1 ℓ
2
i |X̄i·|2

}
.

(13)
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If κ(S) ⩽ C for a constant C independent of n, and ∆q <∞ for some q > 4, then, it
holds that

ρ⋆(A−1(Â−A)) = OP(ΘBd
n,q

+B−1
n

Bd
n∑

m=1

Θm,q +Bd
nΨ) = oP(1),

where we recall Θm,q from Definition 1.230

Remark 2 (Choice of the bandwidth). An optimal choice of the bandwidth will crucially
depend on (i) the (unknown) dependency structure of the spatial random effects, and
(ii) the (known) design matrix X, through Ψ. Often, especially in the context of time
series, it is assumed that Θm,q decays polynomially, i.e. Θm,q = O(m−γ) for some γ > 1;
see Wu (2005); Berkes et al. (2014); Karmakar & Wu (2020). This is also known as weakly235

dependent setting. Then, the optimal choice of Bn can be obtained as Bn ≍ Ψ− 1
d+1 , which

is independent of γ.

Corresponding to Theorem 2, we provide a result tackling the estimation of asymptotic
variance for the random-design case.

Theorem 4. Consider the assumptions of Theorem 2, and further assume that240

λmin(
∑
i

ℓiµ̃iµ̃
⊤
i ) ≥ c0

∑
i

ℓi. (14)

Additionally, grant (V’). Then, in (12), as long as Bn → ∞ satisfies

Bd
nΨ = o(1), with Ψ = max

{
maxi ℓ

2
i∑

i ℓ
2
i

,

∑
i ℓi∑
i ℓ

2
i

}
, (15)

it holds that ρ⋆(A−1(Â−A)) = oP(1).
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5. Appendix A
In this section we provide a proof of Theorem 1. The proof essentially follow the line of

argument in El Machkouri et al. (2013); however we provide the detailed proof for the
sake of completeness.
Proof of Theorem 1. Write the model (1) as330

Y = Xβ +U + ε, (16)

where U = (UL11
⊤
l1
: . . . : ULn1

⊤
ln
)⊤, and ε = (ε1,1 : . . . , εn,ln)

⊤. Note that from (16), it
can be written

β̂LS = β + S−1X⊤U + S−1X⊤ε. (17)

Condition (L) ensures applicability of Lindeberg-Levy central limit theorem on S−1X⊤ε,
and dictates that

(σ2εS
−1)−1/2S−1X⊤ε

d−→ Zε
d
= N(0, Ip) (18)

Next, we aim to show that335

A−1/2S−1X⊤U
d−→ Z

d
= N(0, Ip). (19)

Fix mn ∈ N such that mn → ∞ and mn/|Γn| → 0, as n→ ∞. Subsequently we will omit
the subscript n. Consider the σ field Fm

k := σ(ek−j : |j| ⩽ m), and define the m-dependent
random variables as

U
(m)
k := E[Uk|Fm

k ], k ∈ Zd.

As a stepping stone towards proving (19), let us first show that

E[V V ⊤] → 0 as n→ ∞, (20)

where V = A−1/2S−1X⊤(U −U (m)) ∈ Rp. By Cauchy-Schwarz inequality, it is sufficient340

to show E[V ⊤V ] → 0 as n→ ∞, which is equivalent to

E[(U −U (m))⊤XT−1X(U −U (m))] → 0 as n→ ∞. (21)

We proceed as follows.

E[(U −U (m))⊤S(U −U (m))] =

p∑
k=1

∥∥∥∥ n∑
i=1

(ULi − U
(m)
Li

)ℓiX̄i·,k

∥∥∥∥2
⩽

( n∑
i=1

ℓ2i |X̄i·|2
)
∆(m)

p

where the inequality is due to Proposition 1 of El Machkouri et al. (2013). Therefore, the345

left hand side of (21) can be bounded as

E[(U −U (m))⊤XT−1X(U −U (m))] ⩽ ρ⋆(T−1)

( n∑
i=1

ℓ2i |X̄i·|2
)
∆(m)

p → 0, (22)

by virtue of Condition (W) and Lemma 2 of El Machkouri et al. (2013). This shows (20),
which, along with E[V ] = 0, immediately implies that

V
p→ 0.
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Henceforth, we focus on a central limit theory A−1/2S−1X⊤U (m). We will apply Theorem 350

5. For ease of notations, let

Mn(i) =WiU
m
Li
,

where Wi = A−1/2S−1X⊤Ri ∈ Rp with Ri = (0 : . . . : 1⊤
ℓi
: 0 . . . : 0)⊤ ∈ R

∑
i
ℓi . Clearly,∑n

i=1Mn(i) = A−1/2S−1X⊤U (m), and similarly
∑n

i=1WiULi = A−1/2S−1X⊤U . There-
fore,

∥(
n∑

i=1

Mn(i))(
n∑

i=1

Mn(i))
⊤ − (

n∑
i=1

WiULi)(
n∑

i=1

WiULi)
⊤∥ 355

⩽∥A−1/2S−1X⊤(U −U (m))∥(∥A−1/2S−1X⊤U∥+ ∥A−1/2S−1X⊤U (m)∥) → 0

similar to (22). In view of E[(
∑n

i=1WiULi)(
∑n

i=1WiULi)
⊤] = I, one obtains

E[(
n∑

i=1

Mn(i))(

n∑
i=1

Mn(i))
⊤] → I, as n→ ∞. (23)

Moreover, Condition (W) dictates that∑
i∈Γn

E[∥Mn(i)∥2] =
∑
i∈Γn

E[(Um
Li
)2]R⊤

i XT−1X⊤Ri

⩽ Var(U0)ρ
⋆(T−1)

n∑
i=1

ℓ2i |X̄i·|2 <∞. (24) 360

For the Lindeberg Condition, fix ε > 0. Define

Ln(ε) = m2d
n

∑
i∈Γn

E
(
∥Mn(i)∥2I{∥Mn(i)∥ ⩾ εm−2d

n }
)
.

Define ψ(x) := E[U2
0 I{|U0| ⩾ x}]. Choose

mn := min

{⌊
ρ⋆(T−1)−

1
12d (max

i
ℓ2i |X̄i·|2)−

1
6d

⌋
,

⌊
(ψ(ρ⋆(T−1)))−

1
4d

⌋}
.

Clearly, (23) and (24) are valid for this choice. Proceeding as in Lemma 3 of El Machkouri
et al. (2013), one can derive that limn→∞ Ln(ε) = 0. Therefore, an application of Theorem
5 implies a central limit theory for Um

Li
, in turn showing (19).

Finally, in view of (D) and (W), one can deduce A−1/2S−1/2 → O, which enables us 365

to conclude the proof. □

Theorem 5 (Generalization of Theorem 2, Heinrich (1988)). Let (Γn)n⩾1 be
a sequence of finite subsets of Zd with |Γn| → ∞ as n→ ∞ and let (mn)n⩾1

be a sequence of positive integers. For each n ⩾ 1, let
{
Un(j), j ∈ Zd, Un(j) ∈ Rp

}
370

be an mn-dependent random field with EUn(j) = 0 for all j in Zd. Assume that
E[(
∑

j∈Γn
Un(j))(

∑
j∈Γn

Un(j))
⊤] → Σ as n→ ∞ with ρ⋆(Σ) > c > 0. Further assume

that ∑
j∈Γn

E[∥Un(j)∥2] ⩽ C, (25)
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and for any ε > 0 it holds that

lim
n→∞

Ln(ε) := m2d
n

∑
j∈Γn

E
(
∥Un(j)∥2I∥Un(j)∥⩾εm−2d

n

)
= 0. (26)

Then it can be deduced that
∑

j∈Γn
Un(j)

d→ N(0,Σ).375

Proof of Theorem 3. The main idea of the proof is to accurately estimate the matrix ΣU .
To that end, we begin with an oracle estimate. Consider the kernel K as in the statement
of the theorem, and define

Σ̃U :=

 U2
L1
Jℓ1,ℓ1 UL1UL2K(L2−L1

Bn
)Jℓ1,ℓ2 . . . UL1ULnK(Ln−L1

Bn
)Jℓ1,ℓn

...
... . . .

...
UL1ULnK(Ln−L1

Bn
)Jℓ1,ℓn UL2ULnK(Ln−L2

Bn
)Jℓ2,ℓn . . . U2

Ln
Jℓn,ℓn

 .

(27)

With the help of Σ̃U , define the oracle estimate Ã = S−1X⊤Σ̃UXS−1. We first quantify380

the approximation error of Σ̃U .
The key ingredient in our proof is the argument via projection. Let τ : Z → Zd be a

bijection, and for s ∈ Z, let Gs = σ
(
eτ(l) : l ⩽ s

)
be a σ-field. The corresponding projection

operator is defined by Ps(·) := E [· | Gs]− E [· | Gs−1]. Such operators are also used in
El Machkouri et al. (2013). For convenience, let D = XS−1 ∈ R

∑
i
ℓi×p. Clearly,385

Ã− E[Ã] = D⊤
∑
u∈Z

Pu(Σ̃U )D =
∑
k∈L

K(k/Bn)
∑
u∈Z

Pu(D
⊤Σ̃kD), (28)

where, for each k ∈ L,

Σ̃k :=

 U2
L1
Jℓ1,ℓ1Ik=0 UL1UL2Jℓ1,ℓ2Ik=L1−L2 . . . UL1ULnJℓ1,ℓnIk=L1−Ln

...
... . . .

...
UL1ULnJℓ1,ℓnIk=Ln−L1 UL2ULnJℓ2,ℓnIk=Ln−L2 . . . U2

Ln
Jℓn,ℓnIk=0

 .

Note that

ρ⋆(
∑
u∈Z

Pu(D
⊤Σ̃kD)) ⩽

p∑
s,t

∑
u∈Z

Pu(
∑

(i,j)∈Ak

w
(s)
i w

(t)
j ULiULj ),

where w(s)
i = R⊤

i D·s, with D·s ∈ R
∑

i
ℓi being the s-th column of D, 1 ⩽ s ⩽ p. Subse-390

quently, fix 1 ⩽ s, t ⩽ d. For each k ∈ L, Pu(
∑

(i,j)∈Ak
w

(s)
i w

(t)
j ULiULj ) are martingale

differences with respect to the upwards filtration Gs = σ(eτ(l) : l ⩽ s). We will follow a
slightly different treatment for the two regimes q ∈ (2, 4], ands q > 4. For the latter one,
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since ∥ · ∥q/4 is a norm, an application of Burkholder’s inequality Burkholder (1973) yields,

∥∥∥∥∥∥
∑
u∈Z

∑
(i,j)∈Ak

w
(s)
i w

(t)
j Pu

(
ULiULj

)∥∥∥∥∥∥
2

q/2

395

=

∥∥∥∥∥∥
∣∣∣∣∣∣
∑
u∈Z

∑
(i,j)∈Ak

w
(s)
i w

(t)
j Pu

(
ULiULj

)∣∣∣∣∣∣
2∥∥∥∥∥∥

q/4

≤

∥∥∥∥∥∥
∑
u∈Z

∣∣∣∣∣∣
∑

(i,j)∈Ak

w
(s)
i w

(t)
j Pu

(
ULiULj

)∣∣∣∣∣∣
2∥∥∥∥∥∥

q/4

⩽
∑
u∈Z

∥∥∥∥∥∥
∑

(i,j)∈Ak

w
(s)
i w

(t)
j Pu

(
ULiULj

)∥∥∥∥∥∥
2

q/2

⩽ Cq

∑
u∈Z

 ∑
(i,j)∈Ak

w
(s)
i w

(t)
j

∥∥Pu

(
ULiULj

)∥∥
q/2

2

⩽ Cq ∥U0∥2q
∑
u∈Z

 ∑
(i,j)∈Ak

w
(s)
i w

(t)
j

(
δℓi−τ(u),q + δLj−τ(u),q

)2

400

⩽ 2Cq ∥U0∥2q
∑
u∈Z

(∑
i

w
(s)
i w

(t)
ik
δℓi−τ(u),q

)2

+

(∑
i

w
(s)
i w

(t)
ik
δLik

−τ(u),q

)2
 . (29)

Now, in light of Cauchy-Schwarz inequality,

∑
u∈Z

(∑
i

w
(s)
i w

(t)
ik
δℓi−τ(u),q

)2

⩽ max
i
w

(s)2

i

∑
u∈Z

(∑
i

w
(t)
i δℓi−τ(u),q

)2

⩽ max
i
w

(s)2

i

∑
u∈Z

(∑
i

w
(t)2

i δℓi−τ(u),q

)(∑
i

δℓi−τ(u),q

)
⩽ max

i
w

(s)2

i ∆2
q

∑
i∈Γn

w
(t)2

i . 405

Observing that
∑

k∈LK (k/Bn) = O
(
Bd

n

)
, for q > 4, from (28) we obtain

∥∥∥ρ⋆(Ã− E[Ã])
∥∥∥
q/2

⩽ CqB
d
n∆

2
q

( p∑
s=1

max
i
w

(s)
i

)( p∑
t=1

√√√√|Γn|∑
i=1

w
(t)2

i

)

⩽ Cp,q∆
2
qB

d
n

( p∑
s=1

max
i
D⊤

·sRi

)( p∑
t=1

√√√√D⊤
·t

|Γn|∑
i=1

RiRT
i D·t

)
,
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which immediately yields, in light of (W) and some elementary matrix manipulations,

∥ρ⋆(A−1(Ã− E[Ã]))∥q/2 ⩽ Cp,q∆
2
qB

d
nκ(S)

2 maxi ℓi|X̄i·|√∑
i ℓ

2
i |X̄i·|2

. (30)

For q ∈ (2, 4], the above argument fails since ∥ · ∥q/4 is no longer a norm. Therefore, we will410

follow a slightly different argument which uses (|a1|+ |a2|+ . . .)q/4 ≤ |a1|q/4 + |a2|q/4 + . . .
The following series of inequalities hold :∥∥∥∥∥∥

∑
u∈Z

∑
(i,j)∈Ak

w
(s)
i w

(t)
j Pu

(
ULiULj

)∥∥∥∥∥∥
q/2

q/2

≤

∥∥∥∥∥∥
∑
u∈Z

∣∣∣∣∣∣
∑

(i,j)∈Ak

w
(s)
i w

(t)
j Pu

(
ULiULj

)∣∣∣∣∣∣
2∥∥∥∥∥∥

q/4

q/4

⩽
∑
u∈Z

∥∥∥∥∥∥
∑

(i,j)∈Ak

w
(s)
i w

(t)
j Pu

(
ULiULj

)∥∥∥∥∥∥
q/2

q/2

415

⩽ Cq ∥U0∥q/2q

∑
u∈Z

(∑
i

w
(s)
i w

(t)
ik
δℓi−τ(u),q

)q/2

+

(∑
i

w
(s)
i w

(t)
ik
δLik

−τ(u),q

)q/2
 ,

where the last inequality follows similar to (29). Now, applying Holder’s inequality, one
obtains

∑
u∈Z

(∑
i

w
(s)
i w

(t)
ik
δℓi−τ(u),q

)q/2

⩽ max
i
w

(s)q/2

i

∑
u∈Z

(∑
i

w
(s)
i δℓi−τ(u),q

)q/2

⩽ max
i
w

(s)q/2

i

∑
u∈Z

(∑
i

w
(s)q/2

i δℓi−τ(u),q

)(
δℓi−τ(u),q

)q/2−1
420

⩽ max
i
w

(s)q/2

i ∆q/2
q

|Γn|∑
i=1

(
w

(s)q/2

i

)
Therefore, for a general q > 2, (30) can be generalized to

∥ρ⋆(A−1(Ã− E[Ã]))∥q/2 ⩽ Cp,q∆
2
qB

d
nκ(S)

2maxi ℓi|X̄i·| · (
∑

i(ℓi|X̄i·|)q
′/2)2/q

′∑
i ℓ

2
i |X̄i·|2

, q′ = q ∧ 4.

(31)

Now, we focus on estimating the bias. Let Rn = ρ⋆(E[Ã]−A) ⩽ ρ⋆(S−1)2ρ⋆(X⊤(E[Σ̃U ]−
ΣU )X). Let us define the matrix425

Ek :=

 Jl1,l1Ik=0 Jl1,l2Ik=L1−L2 . . . Jl1,lnIk=L1−Ln

...
... . . .

...
Jl1,lnIk=Ln−L1 Jl2,lnIk=Ln−L2 . . . Jln,lnIk=0

 , k ∈ Zd.



Inference for spatial random effects model 15

This matrix is useful, since E[Σ̃k] = γkEk. On the other hand, E[Σ̃U ]− ΣU =∑
k∈Zd(K(k/Bn)− 1)E[Σ̃k]. Moreover, a routine application of Cauchy-Schwarz inequal-

ity dictates that maxk ρ
⋆(XTEkX) ⩽

∑
i ℓ

2
i |X̄i·|2. Therefore, another application of (W)

yields,

ρ⋆(A−1(E[Ã]−A)) ⩽ Cp,qκ(S)
2|
∑
k∈Zd

(K(k/Bn)− 1)γk|. (32) 430

Clearly,∣∣∣∣∣∣
∑
k∈Zd

γk (K (k/Bn)− 1)

∣∣∣∣∣∣ ⩽
∣∣∣∣∣∣

∑
k/∈[−Bn,Bn]

d

γk

∣∣∣∣∣∣+
∑

k∈[−Bn,Bn]
d

|γk| |K (k/Bn)− 1|

⩽
∑

k/∈[−Bn,Bn]
d

∑
s∈Zd

δs,qδs+k,q + C
∑

k∈[−Bn,Bn]
d

1

Bd
n

|k|
∑
s∈Zd

δs,qδs+k,q

⩽ ∆qΘBd
n,q

+ C
1

Bn

 Bd
n∑

m=1

Θm,p


where the last inequality from q-stability and the definition of Θm,p, and the second 435

term comes from supx |K ′(x)| ⩽ C. Combining this with (31) and (32), and noting that
∆q <∞ due to q-stability, we finally arrive at

ρ⋆(A−1(Ã−A)) ⩽ Cp,qκ(S)
2

(
ΘBd

n,q
+

1

Bn

Bd
n∑

m=1

Θm,p +Bd
n

maxi ℓi|X̄i·| · (
∑

i(ℓi|X̄i·|)q
′/2)2/q

′∑
i ℓ

2
i |X̄i·|2

)
, q′ = q ∧ 4.

(33)
Now we will show that Ã is well-approximated by Â. Observe that Rℓi = Vℓi + Sℓi , where
Vℓi := ULi − X̄⊤

i· S
−1X⊤U , and Sℓi := ε̄i· − X̄⊤

i· S
−1X⊤ε. For 1 ⩽ i, j ⩽ |Γn|, define the

matrices 440

B
(1)
ij = VℓiVLjK(

Li − Lj

Bn
)Jℓi,ℓj

B
(2)
ij = VℓiSLjK(

Li − Lj

Bn
)Jℓi,ℓj

B
(3)
ij = SℓiSLjK(

Li − Lj

Bn
)Jℓi,ℓj .

We will use this matrices to define a set of intermediate block-partitioned matrices to go
from Â to Ã. Let 445

Σ(k) =


B

(k)
(11) B

(k)
(12) . . . B

(k)
(1|Γn|)

...
... . . .

...
B

(k)
(|Γn|1) B

(k)
(|Γn|2) . . . B

(k)
(|Γn||Γn|)

 ∈ R
∑

i
ℓi×
∑

i
ℓi , k = 1, 2, 3,

be the corresponding intermediate Σ matrices. Obviously, Σ̂U − Σ̃U = (Σ(1) − Σ̃U ) + Σ(2) +

Σ(2)⊤ +Σ(3). Therefore, we start off by showing that ρ⋆(A−1S−1X⊤Σ(2)XS−1) is small.
To break Σ(2) further, note that

Σ(2) = ΣT (2) − ΣW (2) +ΣH(2) +ΣZ(2) ,
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where

VℓiSℓk = ULi ε̄k · −ε̄k·X̄⊤
i·D

⊤U − ULiX̄
⊤
k·D

⊤ε+ U⊤DX̄i·X̄k·D
⊤ε450

= T
(2)
ik −W

(2)
ik +H

(2)
ik + Z

(2)
ik ,

and the Rn×n matrices T (2),W (2), H(2) and Z(2) are formed with entries T (2)
ij , W (2)

ij , H(2)
ij

and Z(2)
ij respectively; ΣT (2) = J(T (2) ◦ K)JT ∈ R

∑
i
ℓi×
∑

i
ℓi , and rest of the matrices are

similarly defined. Here Kij = K(
Li−Lj

Bn
) defines the matrix K, and ◦ denotes the Hadamard

product. Note that, invoking (W),455

∥ρ⋆(A−1S−1X⊤ΣT (2)XS−1)∥q/2

⩽Cp,q
κ(S)∑
i ℓi|X̄i·|2

p∑
s,t

∑
k

K(k/Bn)∥
∑

(i,j)∈Ak

ℓiljULi ε̄jX̄i·,sX̄j·,t∥q/2

⩽Cp,q∆qB
d
nκ(S)

maxi ℓi|X̄i·|∑
i ℓ

2
i |X̄i·|2

, (34)

where the final inequality employs a derivation similar to (31). For the analysis of Σ(2)
W ,

Σ
(2)
H and Σ

(2)
Z , we will employ Hölder’s inequality ∥X⊤Y ∥q/2 ≲d,q ∥X∥q∥Y ∥q. Clearly,460

∥ρ⋆(A−1S−1X⊤ΣW (2)XS−1)∥q/2

⩽Cp,q
κ(S)∑
i ℓi|X̄i·|2

∑
k

K(k/Bn)∥ρ⋆(
∑

(i,j)∈Ak

ℓilj(X̄
⊤
i·D

⊤U)ε̄j·|X̄i·| · |X̄j·|)∥q/2

⩽Cp,qB
d
nκ(S)∥D⊤U∥q

√∑
i ℓ

3
i |X̄i·|6∑

i ℓ
2
i |X̄i·|2

⩽Cp,q∆qB
d
nκ(S)ρ

⋆(S−1)

√∑
i ℓ

3
i |X̄i·|6∑

i ℓ
2
i |X̄i·|2

⩽Cp,q∆qB
d
nκ(S)ρ

⋆(S−1)

√∑
i

ℓi|X̄i·|4
maxi ℓi|X̄i·|√∑

i ℓ
2
i |X̄i·|2

, (35)465

where in the last line we have used D⊤U = S−1
∑

i ℓiULiX̄i·, along with Proposition 1 of
El Machkouri et al. (2013). Moreover, an exact same treatment yields

∥ρ⋆(A−1S−1X⊤ΣH(2)XS−1)∥q/2 ⩽ Cp,q∆qB
d
nκ(S)ρ

⋆(S−1)

√∑
i

ℓ2i |X̄i·|4
maxi ℓi|X̄i·|√∑

i ℓ
2
i |X̄i·|2

,

(36)

∥ρ⋆(A−1S−1X⊤ΣZ(2)XS−1)∥q/2 ⩽ Cp,q∆qB
d
nκ(S)ρ

⋆(S−1)2
∑
i

ℓ2i |X̄i·|4 (37)

Moving on, we will show that ρ⋆(A−1S−1X⊤Σ(3)XS−1) is small. Write470

SℓiSLj = ε̄i·ε̄j· − ε̄i·X̄
⊤
j·D

⊤ε− ε̄j·X̄
⊤
i·D

⊤ε+ X̄⊤
i· (D

⊤εε⊤D)X̄j·

= T
(3)
ij −W

(3)
ij −W

(3)
ji + Z

(3)
ij .
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We form the matrices ΣT (3) ,ΣW (3) and ΣZ(3) similar to ΣT (2) ,ΣW (2) and ΣZ(3) respectively.
We immediately have, following (35),

∥ρ⋆(A−1S−1X⊤ΣT (3)XS−1)∥q/2 ⩽ Cp,q∆qB
d
nκ(S)

∑
i ℓi|X̄i·|2∑
i ℓ

2
i |X̄i·|2

⩽ Cp,q∆qB
d
nκ(S)

ρ⋆(S)∑
i ℓ

2
i |X̄i·|2

(38)

475

∥ρ⋆(A−1S−1X⊤ΣW (3)XS−1)∥q/2 ⩽ Cp,q∆qB
d
nκ(S)∥D⊤ε∥q

√∑
i ℓ

3
i |X̄i·|6∑

i ℓ
2
i |X̄i·|2

⩽ Cp,q∆qB
d
nκ(S)ρ

⋆(S−1)

√∑
i

ℓi|X̄i·|4
maxi ℓi|X̄i·|√∑

i ℓ
2
i |X̄i·|2

(39)

∥ρ⋆(A−1S−1X⊤ΣZ(3)XS−1)∥q/2 ⩽ Cp,q∆qB
d
nκ(S)ρ

⋆(S−1)2
∑
i

ℓ2i |X̄i·|4. (40)

Here, (38) employs Cauchy-Schwarz inequality. Finally, we will prove an upper bound on
ρ⋆(A−1D⊤(Σ(1) − Σ̃U )D), where we recall Σ̃U from (27). Writing 480

VℓiVLj =ULiULj − ULiX̄
⊤
j·D

⊤U − ULjX̄
⊤
i·D

⊤U + X̄⊤
i· (D

⊤UUD⊤)X̄j·

:=ULiULj −W
(1)
ij −W

(1)
ji + Z

(1)
ij ,

where we define W (1), Z(1), ΣW (1) and ΣZ(1) as before. From the definition of Σ̃U , it is
enough to upper bound the quantities ρ⋆(A−1D⊤ΣW (1)D) and ρ⋆(A−1D⊤ΣZ(1)D). In fact,
in light of the definitions of the matrices W (3) and Z(3), we recover the bounds exactly 485

same as (39) and (40):

∥ρ⋆(A−1S−1X⊤ΣW (1)XS−1)∥q/2 ⩽ Cp,q∆qB
d
nκ(S)ρ

⋆(S−1)

√∑
i

ℓi|X̄i·|4
maxi ℓi|X̄i·|√∑

i ℓ
2
i |X̄i·|2

(41)

∥ρ⋆(A−1S−1X⊤ΣZ(1)XS−1)∥q/2 ⩽ Cp,q∆qB
d
nκ(S)ρ

⋆(S−1)2
∑
i

ℓ2i |X̄i·|4. (42)

In light of κ(S) ∧∆q = O(1), and (13), the proof concludes itself by applying (D) on
(38), (V2) on (37), (42) and (40), and (V1) on (33), (34)-(36), (39) and (41). □ 490

Proof of Theorem 2. The proof proceeds by establishing corresponding stochastic
versions of Assumptions (L), (W) and (D), before invoking the Theorem 1 to infer the
weak convergence. This argument is organized over the following three steps.

5.1. Stochastic analogue of (L) 495

Write X = (1∑
i
ℓi
: Z), where Z := (z1 : · · · z∑

i
ℓi
)⊤ ∈ R

∑
li×(p−1) is a matrix with i.i.d.

N(µ, σ2) entries, and zk = (Zk,2 : · · · : Zk,p)
⊤. Let hkk = (XS−1X⊤)kk. From equation

(2.1.8) of Cook & Weisberg (1982), it follows that

hkk =
1∑
i ℓi

+ zk(Z⊤Z)−1zk, k ∈ [
∑
i

ℓi], (43)
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where

zk = zk − (
∑
i

ℓi)
−1
∑
k

zk ∈ Rp−1, k ∈ [
∑
i

ℓi], and Z = (z1 : · · · : z∑
i
ℓi
)⊤ ∈ R

∑
i
ℓi×(p−1).

It is trivial to see that (
∑

i ℓi)
−1ZTZ P→ σ2Ip−1. Therefore,500

max
k

zk(Z⊤Z)−1zk ≤ ∥(Z⊤Z)−1∥opmax
k

|zk|2 = OP(
log
∑

i ℓi∑
i ℓi

),

which shows

max
1≤k≤

∑
i
ℓi

(XS−1X⊤)kk
) P→ 0 as n→ ∞. (44)

5.2. Stochastic analogue of (W)
Let M =

∑
i,k ℓiℓkγ|Li−Lk|µ̃iµ̃

⊤
k . Let µi = (µi2, . . . , µip)

⊤. Observe that505

T =

n∑
i,k=1

ℓiℓkγ|Li−Lk|X̄i·X̄
⊤
k· = M+OP(

n∑
i,k=1

√
ℓiℓkγ|Li−Lk|), (45)

where the OP acts entry-wise. Let G =
∑

i,k ℓiℓkγ|Li−Lk|. In view of (W’) it holds that∑n
i,k=1

√
ℓiℓkγ|Li−Lk|∑n

i,k=1 ℓiℓkγ|Li−Lk|
≤ cγ0

∑
i ℓ

3/2
i∑

i ℓ
2
i

= o(1).

Therefore,

G−1|λmin(T )− λmin(M)| = oP(1),

which, in light of (11), ensures that G−1λmin(T ) ≥ c0(1 + oP(1)). Consequently,

ρ⋆(GT−1) = G(λmin(T ))
−1 ≤ c−1

0 (1 + oP(1)). (46)510

On the other hand,

n∑
i=1

ℓ2i |X̄i·|2 =
∑
i

ℓ2i +

p∑
k=2

∑
i

ℓ2i X̄
2
ik =

∑
i

ℓ2i (1 +

p∑
k=2

µ2ik) +OP

(∑
i

ℓ
3/2
i

p∑
k=2

µik

)
+OP(

∑
i

ℓi).

(47)

Recall (D’). In fact,
∑

i
li∑

i
l2i
= o(1) also implies that

∑
i
l
3/2
i∑

i
l2i

= o(1) via Cauchy-Schwarz
inequality. Therefore, there exists a constant M such that∑n

i=1 ℓ
2
i |X̄i·|2∑
i ℓ

2
i

≤M(1 + oP(1)),

which, in view of (W’) and (46), implies that515

ρ⋆(T−1)

n∑
i=1

ℓ2i |X̄i·|2 ≤
M

cc0
(1 + oP(1)). (48)
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5.3. Stochastic analogue of (D)
Finally we shift attention to (D). Clearly,

ρ⋆(S) ≲
n∑

i=1

ℓi∑
j=1

|Xij |2 =
∑
i

ℓi +

p∑
k=2

n∑
i=1

ℓi∑
j=1

Z2
ij,k = OP(

∑
i

ℓi). (49)

On the other hand, from (47), 520∑
i ℓ

2
i |X̄i·|2∑
i ℓ

2
i

≥ 1 + oP(1), (50)

and therefore, (
∑n

i=1 ℓ
2
i |X̄i·|2)−1 ≤ (

∑
i ℓ

2
i )

−1(1 + oP(1)). Invoking (D’), (47) and (49)
jointly provide that

ρ⋆(S)∑n
i=1 ℓ

2
i |X̄i·|2

= oP(1). (51)

5.4. Combining the pieces together 525

In the following, we re-label all the relevant quantities with a subscript to emphasize its
explicit dependence on the number of locations based on which the corresponding quantity
is being computed. For example, if the design matrix X is computed based on some m loca-
tions and accompanying sequence of replications {li(m)}mi=1, the corresponding maximum
leverage max1≤k≤

∑
i
ℓi(m)(XS−1X⊤)kk may be denoted as

(
max1≤k≤

∑
i
ℓi
(XS−1X⊤)kk

)
m

. 530

Moreover, β̂LS(m) denote the corresponding least square estimate.
Now we hark back to the proof of Theorem 2. Observe that, to obtain (9), it is enough

to show, given any increasing sequence of positive integers {tk}k∈N, there exists a further
subsequence {tnk

}, nk ∈ N, such that

A
−1/2
tnk

(β̂LS(tnk
)− β)

d→ N(0, Ip). (52) 535

We proceed as follows. From (44) and (51), there exists a sub-subsequence {t
n
(1)
k

} ⊆ {tn}
such that (

max
k

(XS−1X⊤)kk
)
t
n
(1)
k

a.s.→ 0, and
(

ρ⋆(S)∑n
i=1 ℓ

2
i |X̄i·|2

)
t
n
(1)
k

a.s.→ 0. (53)

Moreover, (48), there exists a subsequence {t
n
(2)
k

} ⊆ {t
n
(1)
k

} such that

(
ρ⋆(T−1)

n∑
i=1

ℓ2i |X̄i·|2
)

t
n
(2)
k

≤ 2M(cc0)
−1 almost surely. (54) 540

We choose nk = n
(2)
k . In view of (53)-(54), an immediate application of Theorem 1 yields

(52), completing our proof. □

Proof of Theorem 4. We proceed similar to Theorem 2, establishing stochastic counter-
parts of (V1) and (V2) before invoking Theorem 3. 545
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5.5. Stochastic analogue of (V1)
Observe that similar to (47), it holds that

max
i
ℓ2i |X̄i·|2 ≤ max

i
ℓ2i +

p∑
k=2

max
i

(
ℓ2iµ

2
ik + ℓ

3/2
i OP(µik)

)
= OP(max

i
ℓ2i ), (55)

where the OP assertion follows from supi |µi| = O(1). Therefore, from (50), we have

maxi ℓ
2
i |X̄i·|2∑

i ℓ
2
i |X̄i·|2

= OP(
maxi ℓ

2
i∑

i ℓ
2
i

) = oP(1). (56)550

5.6. Stochastic analogue of (V2)
Again, similar to (47) it follows that

∑
i ℓ

2
i |X̄i·|4 = OP(

∑
i ℓ

2
i ). On the other hand,

observe that supi σi = O(1) instructs

S =
∑
i

ℓiµ̃iµ̃
⊤
i +OP(

√∑
i

ℓi),

which immediately implies that555

|λmin(S)− λmin(
∑
i

ℓiµ̃iµ̃
⊤
i )| = oP(

∑
i

ℓi).

Invoking (14), we have

λmin ≥ c0
2
(1 + oP(1))

∑
i

ℓi,

and consequently, ρ⋆(S−1) = OP((
∑

i ℓi)
−1). It follows

ρ⋆(S−2)
∑
i

ℓ2i |X̄i·|4 = OP(

∑
i ℓ

2
i

(
∑

i ℓi)
2
) = OP(

maxi ℓ
2
i∑

i ℓ
2
i

) = oP(1). (57)

5.7. Combining the pieces together560

Noting that a sequence of random variable Wn
P→ 0 iff for every sub-sequence nk, there

exists a further sub-sequence nkl such that Wnkl

P→ 0, we proceed similar to Section 5.4.
Given any subsequence nk, from (56), (57), and (51), there exists a subsequence nkl such
that(
maxi ℓ

2
i |X̄i·|2∑

i ℓ
2
i |X̄i·|2

)
nkl

a.s.→ 0,
(
ρ⋆(S−1)

√∑
i

ℓ2i |X̄i·|4
)
nkl

a.s.→ 0, and
(

ρ⋆(S)∑n
i=1 ℓ

2
i |X̄i·|2

)
nkl

a.s.→ 0.

Moreover, recall Ψ from Theorem 3. Clearly from (56) and (57) and by (15), along the565

sequence nkl , Bnkl
Ψ

a.s.→ 0. Therefore, invoking Theorem 3, we obtain(
ρ⋆(A−1(Â−A))

)
nkl

= oP(1),

which completes the proof via the double-subsequence argument as stated in the beginning
of Section 5.4. □


	Introduction
	Organization of the paper
	Notations

	Spatial dependency structure
	Central Limit Theory for Regression with Random effects
	Regularity conditions on (1) and X
	Central limit theory

	Estimation of Variance
	Appendix A
	Stochastic analogue of (L)
	Stochastic analogue of (W)
	Stochastic analogue of (D)
	Combining the pieces together
	Stochastic analogue of (V1)
	Stochastic analogue of (V2)
	Combining the pieces together


